Control Banding nanotool

Dave Zalk, Sam Paik, Paul Swuste

Lawrence Livermore National Laboratory, CA, USA TUDelft

Origin of Control Banding

Pharmaceutical industry, toxicological uncertainties (1970 - 1980) UK COSHH Essentials (Annals, 1998)

6 Control Banding workshops (Annals, 2003; Zalk & Nelson, 2008)

Control Banding

hazard + exposure/scenario's ------ risk + solutions

Control Banding, chemicals

hazard bands: EU risk phrases

exposure bands: volume, dustiness, volatility

control levels: engineering principles

'it might be hazardous at the bottom'

size, reactivity, barrier crossing

health hazards: carbon nanotubes introduced into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study (Poland et al., 2008)

public perception: Crichton M (2002). Prey, Harper Collins

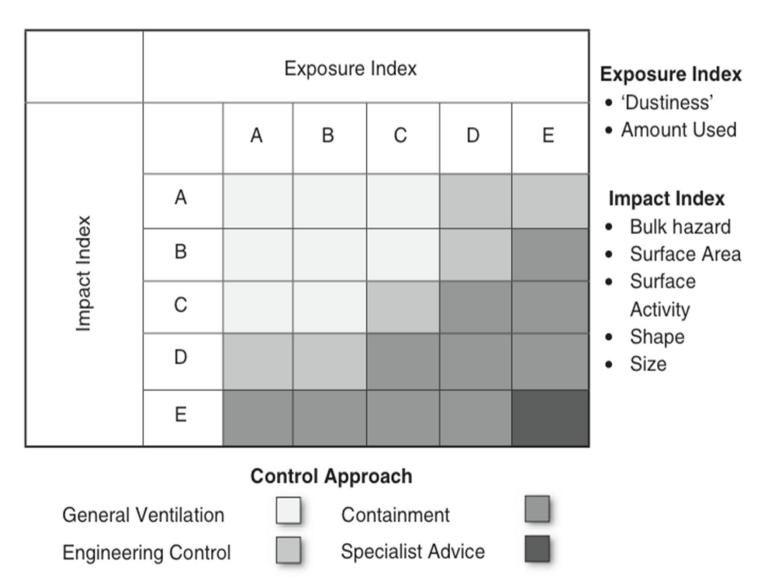
Manufactured nanomaterials

uncertainties

 \circ exposure scenarios

 \circ levels of exposure

 \circ population at risk


- \circ deposition clearance
- \circ structure effect

Xavier Miserachs El Born 1962

Control Banding manufactured nanomaterials

A. D. Maynard

Risk level matrix

Probability

	extremely unlikely (0-25)	less likely (26-50)	likely (51-75)	probable (76-100)
very high (76-100)	RL 3	RL 3	RL 4	RL 4
high (51-75)	RL 2	RL 2	RL 3	RL 4
medium (26-50)	RL 1	RL 1	RL 2	RL 3
low (0-25)	RL 1	RL 1	RL 1	RL 2

Severity

- RL 1: general ventilation
- RL 2: fume hoods or local exhaust ventilation
- RL 3: containment
- RL 4: seek specialist advice

Severity score (0 – 100)

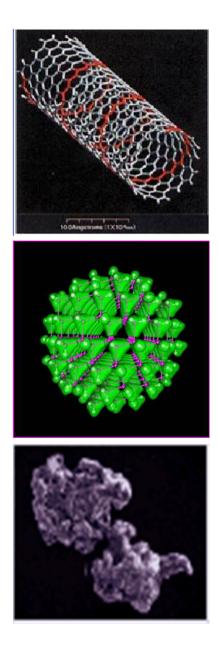
- physical properties
 toxicological properties
 0 10
 0 7.5
- toxicological properties parent materials
 0 5

Probability score (0 – 100)

0	amount used	6.25 - 25
0	dustiness	7.5 - 30
0	exposed population	5 - 15
0	frequency and duration of operation	0 - 15

unknown \equiv 75% of highest score

Severity score (1), physical properties


0	surface chemistry	high medium low unknown	10 5 0 7.5
0	particle size	tubular, fibrous anisotropic compact or spherical unknown	10 5 0 7.5
0	particle diameter	1 – 10 nm 11 - 40 nm < 41 – 100 nm unknown	10 5 0 7.5
0	solubility	insoluble soluble unknown	10 5 7.5

Particle shape, nanomaterial

Tubular, fibrous, nanotubes

Quantum dots

Irregular shape

Severity score (2), toxicological properties

0 0 0	carcogenicity reproductive toxicity mutagenicity dermal toxicity	yes no unknown	7.5 0 5.625
0	toxicity parent material	< 10 µgm ⁻³ 10 – 100 µgm ⁻³ 101 µgm ⁻³ – 1 mgm > 1 mgm ⁻³ unknown	10 5 1 ⁻³ 2.5 0 7.5
0 0 0	carcogenicity parent material reproductive toxicity parent material mutagenicity parent material dermal toxicity parent material	yes no unknown	5 0 3.75

Probability score (1)

 estimated amount during operation 	> 100 mg 11 – 100 mg 0 – 10 mg unknown	25 12.5 6.25 18.75
 dustiness/mistiness 	high medium Iow unknown	30 15 7.5 22.5
 number of employees 	> 15 11 – 15 6 – 10 unknown	15 10 5 11.25

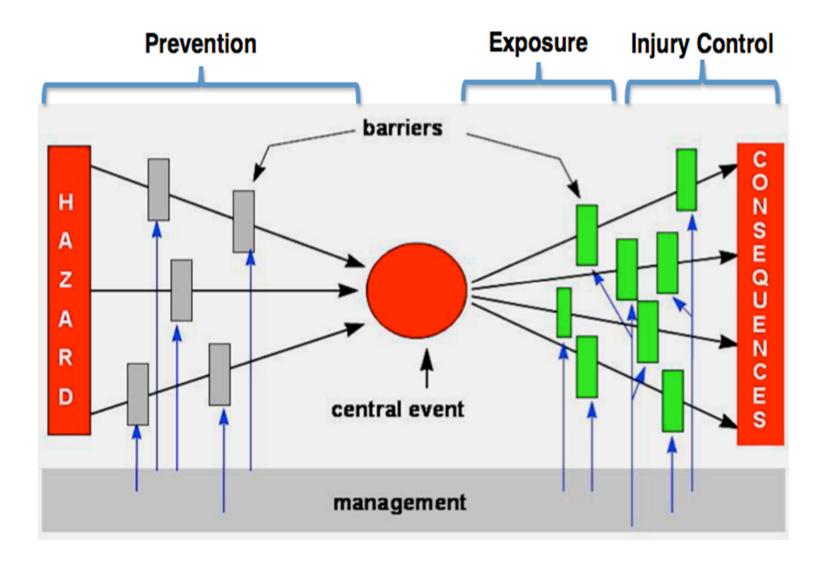
Probability score (2)

 frequency of operation 	daily	
	weekly	
	monthly	
	less than monthly	
	unknown	1
 duration of operation 	> 4 hr	

> 4 hr	15
1 – 4 hr	10
30 -60 min	5
< 30 min	0
unknown	11.25

11.25

Risk level matrix


Probability

	extremely unlikely (0-25)	less likely (26-50)	likely (51-75)	probable (76-100)
very high (76-100)	RL 3	RL 3	RL 4	RL 4
high (51-75)	RL 2	RL 2	RL 3	RL 4
medium (26-50)	RL 1	RL 1	RL 2	RL 3
low (0-25)	RL 1	RL 1	RL 1	RL 2

Severity

- RL 1: general ventilation
- RL 2: fume hoods or local exhaust ventilation
- RL 3: containment
- RL 4: seek specialist advice

Bowtie

Managing hazards and risk

utility of control technologies establish OEL's prevention through design establishment of exposure register conduct of medical surveillance

Schulte et al., 2010, keynote IOHA Conference, Rome

Discussion

risk management ≡ managing scenarios

limitations

- factors and scores of probability and severity
- \circ no design changes

advantages

- \circ transparent, logical, and simple method
- support for decision making under uncertainties

Thesis, December 22nd 2010, TUDelft

CONTROL BANDING

A simplified, qualitative strategy for the assessment of occupational risks and selection of solutions

Dave Zalk